B. Bourgeois • F. Delaplace • F. Fortain • É. Tournesac

MATHS ECE

1^{re} et 2^e années

Tout-en-un

- → L'essentiel du cours
- → Applications
- → Fiches méthode
- → Exercices d'entraı̂nement
- → Sujets de concours
- → Tous les corrigés détaillés
- → Simulations avec Scilab

Avant-propos

Pour aborder sereinement les concours à l'issue de ses deux années de classe préparatoire, l'étudiant doit maîtriser le calcul algébrique sous toutes ses formes : les deux premiers chapitres sont consacrés à la révision de cette notion, exploitée dans le reste de l'ouvrage.

À partir du chapitre 3, il ne s'agit plus de réviser mais bien d'entamer les notions fondamentales du programme, caractérisé par un enseignement en spirale et une ouverture aux notions annexes, tout en respectant la division semestrielle. On trouvera dans l'ouvrage :

- L'essentiel du cours, résumant, dans chaque chapitre, les connaissances indispensables et complété par de nombreux exemples et exercices d'application corrigés. Ils sont destinés à démontrer une propriété ou à présenter son utilisation. Le programme n'étant pas uniquement constitué de définitions ou de théorèmes directement applicables en exercices, certaines propriétés proches sont à démontrer par l'étudiant ou précisées dans les énoncés pour permettre la résolution de problèmes. Le cours a donc été conçu en prenant en compte ces propriétés « adhérentes au programme » ;
- Des exercices corrigés variés qui recouvrent de nombreuses situations. Pour un travail profitable, l'étudiant doit repérer les connaissances et les méthodes qui lui manquent; de façon fréquente, les corrigés sont volontairement sommaires, conçus tels pour permettre à l'étudiant de fournir le travail nécessaire à sa progression par la rédaction des calculs et des raisonnements;
- Des fiches méthode, regroupées à la fin de chaque semestre, sont destinées à aider l'étudiant à rédiger ses propres fiches. Ces fiches recouvrent principalement les thèmes d'algèbre linéaire, qui posent généralement des difficultés de synthèse;
- Des sujets incontournables aux concours qui regroupent deux des grands thèmes principaux à connaître.
- Des simulations sur Scilab, présentes dans les chapitres où le logiciel peut être utilisé mais surtout dans un chapitre annexe à la fin de l'ouvrage. Elles permettent de recouvrir les situations les plus diverses. Ces simulations ont pour but de présenter des séquences d'instructions répondant aux problèmes simplement, sans chercher à écrire des programmes complexes qui mettent davantage en avant le côté technique, au détriment du côté pratique.

Nous tenons à remercier toutes les personnes qui ont largement contribué à la réalisation de cet ouvrage : Danièle Peret-Gentil pour ses idées d'exercices et de méthodes, notamment en probabilités, Claire Delaplace pour sa relecture et ses conseils sur la fluidité de la lecture, et tous les étudiants qui, par leur participation en cours et leurs questions, nous ont aidé dans notre rédaction

Merci également à l'équipe des éditions Vuibert; c'est grâce à son écoute, ses conseils et sa grande disponibilité que cet ouvrage a vu le jour.

Table des matières

Avant-propos		iii
Première ann	née – Premier Semestre	1
1.1 Nombres 1.2 Topologie 1.3 Géométri Énoncés		3 8 12 16 19
2.1 Expressions 2.2 Équations 2.3 Courbes d Énoncés	ons algébriques s et inéquations des fonctions	27 27 30 40 49 51
3.2 Démonstr Énoncés	ons et connecteurs logiques	
4.2 Opération 4.3 Applicati 4.4 Cardinau Énoncés	els et parties d'un ensemble	83 86 90 93
5.2 Matrices 5.3 Opération Énoncés	el 1 ns et généralités 1 particulières 1 ns sur les matrices 1 1 1 1 1 1 1	12 15 26
6.1 Systèmes 6.2 Systèmes 6.3 Résolutio 6.4 Système l Énoncés	tuations linéaires d'équations linéaires et matrices équivalents n d'un système d'équations linéaires nomogène 1 1 1	43 46 50 52
7.1 Suites déi 7.2 Définition 7.3 Suites con 7.4 Variation 7.5 Théorème Énoncés	8	72 74 75 78

VI TABLE DES MATIÈRES

8	Polynômes à une indéterminée		87
	8.1 Ensemble des polynômes		
	8.2 Espace vectoriel $\mathbb{R}[X]$		
	8.3 Algèbre des polynômes		
	8.4 Arithmétique des polynômes		
	8.5 Factorisation dans $\mathbb{R}[X]$		
	Énoncés		
	Corrigés	. 2	02
9	Limites et continuité – Étude locale	2	13
	9.1 Continuité et limite	. 2	13
	9.2 Extension de la notion de limite	. 2	15
	9.3 Asymptotes à la courbe d'une fonction	. 2	17
	9.4 Opérations sur les limites	. 2	19
	9.5 Théorèmes	. 2	20
	9.6 Calcul des limites	. 2	21
	Énoncés		
	Corrigés	. 2	26
10	Fonctions numériques – Étude globale	2	37
10	10.1 Généralités	_	
	10.2 Fonction continue sur un intervalle		
	10.3 Opérations et théorèmes		
	10.4 Bijections, fonctions réciproques et équations		
	Énoncés		
	Corrigés		
11			
11	Fonctions usuelles 11.1 Fonctions polynomiales		67 67
	11.2 Fonctions rationnelles		
	11.3 Fonctions logarithmes		
	11.4 Fonctions exponentielles		
	11.5 Fonctions puissances		
	11.6 Fonction partie entière, fonction partie décimale	. 2	94 96
	Énoncés		
	Corrigés		
12	Probabilités finies		99
	12.1 Événements		
	12.2 Combinaisons		
	12.3 Loi de probabilité et probabilités		
	12.4 Conditionnement et indépendance		
	Énoncés		
	Corrigés	. 3	16
Fi	ches méthode – Semestre 1	32	25
Pı	remière année – Deuxième Semestre	34	<u>1</u> 7
13	Dérivabilité, convexité et fonctions réciproques	3	49
	13.1 Dérivabilité en un point		49
	13.2 Fonctions dérivables et dérivées		
	13.3 Applications du calcul différentiel	. 3	59

Table des matières vii

	13.4 Dérivées successives 13.5 Fonctions convexes Énoncés Corrigés	367 370
14	Intégration 14.1 Primitives d'une fonction continue – Fonctions d'aire et intégrale 14.2 Fonctions continues par morceaux 14.3 Propriétés des intégrales 14.4 Calcul des intégrales 14.5 Généralisation de la notion d'intégralité Énoncés	379 379 382 385 388 393
	Corrigés	404
15	Séries numériques 15.1 Généralités sur les séries numériques	415 419 421
16	Espace vectoriel $\mathfrak{M}_{n,1}(\mathbb{R})$ 16.1 Espace vectoriel $\mathfrak{M}_{n,1}(\mathbb{R})$ 16.2 Sous-espace vectoriel de $\mathfrak{M}_{n,1}(\mathbb{R})$ 16.3 Applications linéaires Énoncés Corrigés	437 439 441
17	Espaces probabilisés 17.1 Tribu – Système complet d'événements 17.2 Probabilité – Espace probabilisé 17.3 Conditionnement 17.4 Indépendance Énoncés Corrigés	459 461 463 466
18	Variables aléatoires discrètes 18.1 Généralités sur les variables aléatoires réelles 18.2 Variable discrète 18.3 Moments d'une variable aléatoire 18.4 Lois discrètes usuelles Énoncés Corrigés	480 482 484 492
19	Variables à densité (1) 19.1 Généralités	510 511 518

VIII TABLE DES MATIÈRES

Fi	ches méthode – Semestre 2	537
D	euxième année – Troisième Semestre	561
20	Espaces vectoriels 20.1 Espace vectoriel 20.2 Sous-espaces vectoriels 20.3 Familles génératrices et bases 20.4 Matrice d'une famille de vecteurs de \mathbb{R}^n et de $\mathbb{R}_n[X]$ 20.5 Familles libres et familles liées 20.6 Bases et dimension 20.7 Changement de bases et matrices de passage Énoncés Corrigés	. 564 . 565 . 567 . 568 . 571 . 573
	Applications linéaires 21.1 Applications linéaires 21.2 Espaces vectoriels isomorphes 21.3 Image et noyau d'une application linéaire 21.4 Espace vectoriel de dimension finie 21.5 Rang d'une application linéaire et théorème du rang 21.6 Isomorphisme entre $\mathcal{L}(E, F)$ et $\mathfrak{M}_{n,m}(\mathbb{R})$ Énoncés Corrigés	589590593596598599604
22	Réduction des endomorphismes et des matrices carrées 22.1 Réduction des endomorphismes 22.2 Réduction des matrices carrées Énoncés Corrigés	. 627 . 636
23	Suites et séries – Compléments 23.1 Comportement asymptotique des suites 23.2 Suites définies par récurrence – Compléments 23.3 Séries – Compléments Énoncés Corrigés	. 661 . 669 . 673
24	Comparaison des fonctions et développements limités 24.1 Négligeabilité 24.2 Équivalents 24.3 Développements limités Énoncés Corrigés	. 689 . 693 . 700
25	Intégrales impropres 25.1 Intégrales impropres des fonctions positives 25.2 Applications Énoncés Corrigés	. 717 . 724

Table des matières

26	Couples aléatoires discrets – Suites de variables aléatoires	741
	26.1 Couples aléatoires discrets	
	Énoncés	
	Corrigés	
Fi	iches méthode – Semestre 3	765
D	euxième année – Quatrième Semestre	809
27	Fonctions de deux variables (1)	811
	27.1 Topologie de \mathbb{R}^2	
	27.2 Fonctions de deux variables	
	27.3 Continuité en un point	
	27.4 Continuité globale	821
	27.5 Dérivées partielles d'ordre 1	
	Énoncés	
	Corrigés	830
28	Fonctions de deux variables (2)	841
	28.1 Dérivées partielles d'ordre 2	
	28.2 Développement limité d'ordre 2 d'une fonction de classe C^2	
	28.3 Extrema sur un ouvert	
	Énoncés	
	Corrigés	
20	Variables à densité (2)	867
	29.1 Fonctions de variables à densité	
	29.2 Opérations sur les variables indépendantes	
	29.3 Moments d'ordre 1 et 2	
	29.4 Lois usuelles	872
	29.5 Suites de variables aléatoires – Vecteurs aléatoires	877
	Énoncés	
	Corrigés	882
30	Convergence	891
	30.1 Convergence en probabilité	891
	30.2 Convergence en loi	892
	Énoncés	
	Corrigés	904
31	Estimateurs et estimations	915
	31.1 Échantillons d'une loi de probabilité	915
	31.2 Estimateurs	
	31.3 Suites d'estimateurs	
	31.4 Estimation par intervalles de confiance	
	Énoncés	
	Corrigés	939

Table des matières

Fi	iches méthode – Semestre 4	953
S	ujets incontournables aux concours	959
A	Fonctions génératrices, suites et probabilités A.1 Fonctions génératrices et suites	
В	Processus de Poisson	98
A	annexe	101
Sc	cilab	1013
	Environnement	1013
	Éditeur – Programmation	102
	Représentations graphiques	1022
	Programmes	

CHAPITRE 6

Systèmes d'équations linéaires

L'objectif de ce chapitre est de donner une méthode de résolution des systèmes linéaires vérifiant les deux conditions suivantes :

- ▶ elle doit être universelle en ce sens qu'elle doit s'appliquer à tous les systèmes ;
- ▶ elle doit donner exactement l'ensemble des solutions et non un ensemble de solutions possibles.

La méthode qui sera décrite ici est la méthode de Gauss qui répond à ces deux exigences.

6.1 Systèmes d'équations linéaires et matrices

6.1.1 Système d'équations linéaires

On appelle *équation linéaire*, une équation de la forme :

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$

où $a_1, a_2, ..., a_n, b$ sont des réels donnés et $x_1, x_2, ..., x_n$ des inconnues.

Un système d'équations linéaires (S) est la donnée simultanée de plusieurs équations linéaires.

Exemple

$$\begin{cases} 2x - y + 3z = -1\\ x - 3y = 2\\ -x - 2y + z = 0 \end{cases}$$

est un système de trois équations linéaires. *Résoudre* le système, c'est déterminer les valeurs de x, y et z qui vérifient les trois égalités.

Le système est dit *homogène* si le second membre est nul, c'est-à-dire si le système est constitué d'équations de la forme :

$$a_1 x_1 + a_2 x_2 + \ldots + a_n x_n = 0$$

6.1.2 Matrice d'un système d'équations linéaires

Tout système d'équations linéaires (S) est *équivalent* à une équation matricielle de la forme A.X = B, qu'on écrit aussi AX = B, où :

► A est la matrice des coefficients des inconnues ;

►
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 est la matrice des inconnues, $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$ est la matrice du second membre.

La matrice A est appelée matrice du système.

A X = B est parfois appelée *écriture matricielle du système* (S) (ou écriture matricielle associée au système (S)) et on dit aussi que le système d'équations (S) est *équivalent* à l'équation matricielle A X = B.

Exemple

Le système suivant :

$$\begin{cases} 2x - y + 3z = -1\\ x - 3y = 2\\ -x - 2y + z = 0 \end{cases}$$

est équivalent à l'équation matricielle AX = B avec :

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & -3 & 0 \\ -1 & -2 & 1 \end{pmatrix} \qquad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \qquad B = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$$

6.1.3 Ensemble des solutions d'un système

Soit un système d'équations linéaires (S) à coefficients dans \mathbb{R} dont les inconnues sont notées x_1 , x_2 , ..., x_n . On appelle *ensemble de solutions* \mathcal{S} de (S), le sous-ensemble de \mathbb{R}^n constitué de toutes les n-listes solutions du système.

On notera que S n'est pas vide, car la n-liste (0, 0, ..., 0) est une solution de S. Par la suite, on confondra le système d'équations et son écriture matricielle, les solutions du système et les matrices colonnes, solutions de l'équation matricielle du système.

Propriété 1

L'ensemble des solutions $\mathcal S$ d'un système homogène est stable par addition et multiplication par un réel; c'est-à-dire :

$$\forall (X_1, X_2) \in \mathcal{S}^2$$
, $\forall \alpha \in \mathbb{R}$, $\alpha X_1 + X_2 \in \mathcal{S}$

On dit que S est un sous-espace vectoriel de \mathbb{R}^n .

Propriété 2

Soit AX = B l'écriture matricielle d'un système d'équations linéaires, X_1 une solution particulière du système, c'est-à-dire un vecteur colonne vérifiant $AX_1 = B$, et S_0 le sous-espace vectoriel des solutions du système d'équations homogène associé, c'est-à-dire l'ensemble des solutions de l'équation AX = 0.

L'ensemble des solutions d'un système d'équations linéaires est l'ensemble S des n-listes égales à la somme de X_1 et d'un vecteur de S_0 :

$$\mathcal{S} = \{ X \in \mathfrak{M}_{n,1}(\mathbb{R}) / \exists X_0 \in \mathcal{S}_0, X = X_0 + X_1 \}$$

6.1.4 Systèmes d'équations linéaires et Scilab

D'après les propriétés 1 et 2 ci-dessus, un vecteur est solution d'un système d'équations linéaires dont l'écriture matricielle est AX = B si, et seulement si, il est de la forme $X_1 + X_0$, où X_0 est une solution du système homogène associé et X_1 une solution particulière du système.

L'ensemble S_0 des vecteurs X_0 est un sous-espace vectoriel de \mathbb{R}^n , noté KerA dans Scilab (on en verra la raison au troisième semestre, chapitre 21); l'ensemble des solutions de l'équation est donné par l'instruction [\mathbf{x} , \mathbf{kerA}] = $\mathbf{linsolve}(\mathbf{A}, \mathbf{b})$:

--> A = [2 -1 3; 1 -3 0; -1 -2 1]
$$(\leftarrow)$$

--> b = [-1; 2; 0] (\leftarrow)
--> [x, kerA] = linsolve (A, b) (\leftarrow)

On comprendra que l'ensemble des solutions du système homogène associé est réduit à l'unique solution (0,0,0) et que l'ensemble des solutions du système AX = B est réduit à l'unique solution donnée par Scilab en valeur approchée :

$$(x, y, z) = (-0.35, 0.55, 0.75)$$

6.2 Systèmes équivalents

6.2.1 Équivalence par réduction

On dit qu'un système d'équations (S') est *équivalent par réduction* à un système d'équations (S) s'il se déduit de (S) en supprimant éventuellement les équations identiques (s'il y en a).

Exemple

Le système (S):

$$\begin{cases} x - 2y + 3z = 1 \\ -x - y + 2z = 0 \\ x - 2y + 3z = 1 \end{cases}$$

est équivalent par réduction à (S') :

$$\begin{cases} x - 2y + 3z = 1 \\ -x - y + 2z = 0 \end{cases}$$

On conviendra de dire que tout système d'équations n'ayant pas d'équations identiques est équivalent à lui-même par réduction.

Ainsi, (S) est équivalent à (S') par réduction.

On notera que deux systèmes d'équations linéaires équivalents par réduction ont le même ensemble de solutions.

6.2.2 Équivalence linéaire et équivalence de deux systèmes

Soit (S) un système d'équations linéaires et A X = B son écriture matricielle. On dit qu'un système d'équations linéaires (S') est *linéairement équivalent* à (S), s'il existe une matrice inversible C telle que l'écriture matricielle de (S') soit C A X = C B.

On dit que deux systèmes d'équations linéaires sont *équivalents* si l'un est équivalent par réduction à un système linéairement équivalent de l'autre.

Exemple

Considérons le système (S) défini par :

$$\begin{cases} 2x - y + 3z = -1 \\ x - 3y = 2 \\ -x - 2y + z = 0 \end{cases}$$

dont l'écriture matricielle est AX = B avec :

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & -3 & 0 \\ -1 & -2 & 1 \end{pmatrix} \qquad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \qquad B = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$$

et la matrice:

$$C = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Elle est inversible, car elle est triangulaire supérieure sans 0 sur la diagonale; rappelons que son inverse nous est donné dans la console Scilab par la syntaxe C^-1 ou inv(C):

$$-->$$
 C = [1 1 −1; 0 1 −1; 0 0 1] (\leftarrow $-->$ C $^-$ 1 (\leftarrow)

Soit le système (S') dont l'écriture matricielle est CAX = CB:

$$CA = \begin{pmatrix} 4 & -2 & 2 \\ 2 & -1 & -1 \\ -1 & -2 & 1 \end{pmatrix}$$
 et $CB = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$

alors le système (S) est linéairement équivalent à (S') :

$$\begin{cases} 4x - 2y + 2z = 1\\ 2x - y - z = 2\\ -x - 2y + z = 0 \end{cases}$$

On notera que deux systèmes équivalents ont même ensemble de solutions.

6.2.3 Transformations élémentaires sur les lignes d'une matrice

On dit qu'une matrice A' est une transformée (sur les lignes) de A si A' est égale au produit à gauche de la matrice A par une matrice inversible T. La matrice T est la matrice de la transformation de l'identité. Elle peut être le produit de plusieurs matrices de transformations successives; la matrice de la première transformaion étant celle de droite dans le produit.

Exemple

Pour la matrice A ci-dessous, on veut permuter la première ligne et la deuxième $(L_1 \leftrightarrow L_2)$, puis remplacer la troisième ligne par la troisième ligne moins deux fois la seconde $(L_3 \leftarrow L_3 - 2L_2)$ et la quatrième par la quatrième plus trois fois la seconde.

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \quad \text{et} \quad T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

La matrice obtenue par cette transformation est donnée par Scilab:

```
--> A = \begin{bmatrix} 2 & -1 & 1; & 1 & 0 & 3; & 0 & -1 & 2; & 2 & 2 & 1 \end{bmatrix} (\longleftrightarrow)
--> T = \begin{bmatrix} 1 & 0 & 0 & 0; & 0 & 1 & 0 & 0; & 0 & -2 & 1 & 0; & 0 & 3 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 & 0; & 1 & 0 & 0 & 0; & \dots & 0 & 0 & 0 & 1 \end{bmatrix} (\longleftrightarrow)
--> B = T * A (\longleftrightarrow)
B =

1. 0. 3.
2. -1. 1.
-4. 1. 0.
8. -1. 4.
```

Les applications qui:

- échangent deux lignes d'une matrice $L_i \leftrightarrow L_j$;
- ► remplacent une ligne L_i par αL_i , où $\alpha \neq 0$;
- ▶ remplacent une ligne L_i par une somme de cette ligne avec une autre : $L_i \leftarrow L_i + L_i$;
- remplacent une ligne L_i par $\alpha L_i + \beta L_i$, où $\alpha \neq 0$,

sont des transformations dites élémentaires sur les lignes des matrices.

6.2.4 Réduction d'une matrice par la méthode de Gauss

Soit n et m des entiers supérieurs ou égaux à 2 et $A \in \mathfrak{M}_{n,m}(\mathbb{R})$; il existe une matrice $B = (b_{ij}) \in \mathfrak{M}_{n,m}(\mathbb{R})$ telle que :

- ▶ si $B \neq 0$, alors $b_{1,1} \neq 0$ et $b_{2,1} = 0$ (on confond la matrice B avec sa sous-matrice obtenue en supprimant toutes les premières colonnes, si elles sont nulles);
- ▶ si, pour $(i,j) \in [1, n-1]^2$ et pour tout $k \in [1,j]$, $b_{i,k} = 0$ et $b_{i,j+1} \neq 0$, alors, pour tout $k \in [1,j+1]$, $b_{i+1,k} = 0$.

On dit que *B* est une réduite de Gauss de *A*.

Méthode pour obtenir une réduite de Gauss

- ▶ Si le coefficient $a_{1,1}$ de la matrice à réduire n'est pas nul, on l'utilise comme pivot pour réduire toutes les autres lignes de la matrice. S'il est nul, on permute d'abord la première avec l'une des lignes ayant un coefficient $a_{i,1} \neq 0$, puis on réduit les autres lignes de la matrice obtenue après cette permutation (en ne considérant la réduction que sur la sousmatrice obtenue en supprimant toutes les premières colonnes nulles, s'il y en a).
- ▶ Dans la nouvelle matrice obtenue, tous les coefficients $a_{1,i}$ sont nuls pour $i \ge 2$. On réduit de la même façon que précédement la sous-matrice issue du résultat précédent en supprimant la première ligne et la première colonne et ainsi de suite jusqu'à l'obtention d'une réduite de Gauss de la matrice initiale.

Propriétés

Ce qui précède permet d'affirmer que :

- ▶ toute matrice carrée peut se réduire en une matrice triangulaire supérieure ;
- ▶ toute réduite de Gauss est une matrice n'ayant que des 0 sous sa diagonale.

6.3 Résolution d'un système d'équations linéaires

Un système d'équations linéaires se présente matriciellement sous la forme AX = B, où A est la matrice du système, X celle des inconnues et B la matrice colonne du second membre.

Si plusieurs systèmes d'équations ne diffèrent entre eux que par leur second membre, alors on pourra résoudre un seul système en considérant pour second membre la concaténation des matrices colonnes du second membre (voir l'exercice 6.1).

Pour résoudre un système d'équations linéaires, on peut utiliser la méthode de Gauss sur la matrice bloc [A B] ou (AB).

Dans la pratique, on n'écrit pas les matrices de transformations; on écrit directement les matrices transformées. C'est ce que nous ferons dorénavant.

Exercice 6.1. Résoudre les systèmes suivants.

$$\begin{cases} 2x - y + 3z = -1 \\ x - 3y = 2 \\ -x - 2y + z = 0 \end{cases}$$
 et
$$\begin{cases} 2x - y + 3z = 3 \\ x - 3y = -2 \\ -x - 2y + z = 1 \end{cases}$$

Solution

Le système s'écrit matriciellement A X = B avec :

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & -3 & 0 \\ -1 & -2 & 1 \end{pmatrix} \qquad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 3 \\ 2 & -2 \\ 0 & 1 \end{pmatrix}$$

On considère la matrice bloc M = [A B], c'est-à-dire :

$$M = \begin{pmatrix} 2 & -1 & 3 \\ 1 & -3 & 0 \\ -1 & -2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 2 & -2 \\ 0 & 1 \end{pmatrix}$$
que l'on écrit $M = \begin{pmatrix} 2 - 1 & 3 & -1 & 3 \\ 1 - 3 & 0 & 2 & -2 \\ -1 - 2 & 1 & 0 & 1 \end{pmatrix}$

On va résoudre simultanément les deux systèmes d'équations en utilisant la *méthode de Gauss* sur *M*.

▶ On utilise $a_{1,1} = 2$ comme pivot pour réduire les lignes 2 et 3; on obtient :

$$M_1 = \begin{pmatrix} 2 & -1 & 3 & -1 & 3 \\ 0 & -5 & -3 & 5 & -7 \\ 0 & -5 & 5 & -1 & 5 \end{pmatrix}$$

▶ On utilise $a_{2,2} = -5$ comme pivot pour réduire la ligne 3; on obtient la réduite de Gauss :

$$M_2 = \begin{pmatrix} 2 & -1 & 3 & -1 & 3 \\ 0 & -5 & -3 & 5 & -7 \\ 0 & 0 & 8 & -6 & 12 \end{pmatrix}$$

La réduite de Gauss obtenue sous la forme de matrice bloc s'écrit :

$$M' = \left(\begin{pmatrix} 2 & -1 & 3 \\ 0 & -5 & -3 \\ 0 & 0 & 8 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 5 & -7 \\ -6 & 12 \end{pmatrix} \right)$$

Ainsi, les systèmes à résoudre sont respectivement équivalents aux deux systèmes suivants :

$$\begin{cases} 2x - y + 3z = -1 \\ -5y - 3z = 5 \\ 8z = -6 \end{cases}$$
 et
$$\begin{cases} 2x - y + 3z = 3 \\ -5y - 3z = -7 \\ 8z = 12 \end{cases}$$

▶ Pour le premier système, on a $z = -\frac{3}{4}$ et (2^e équation) $y = -1 - \frac{3}{5}z = -1 + \frac{9}{20} = -\frac{11}{20}$; dans la première équation :

$$x = -\frac{1}{2} + \frac{1}{2}y - \frac{3}{2}z = -\frac{1}{2} - \frac{11}{40} + \frac{9}{8} = \frac{7}{20}$$

L'ensemble des solutions de ce premier système est :

$$S_1 = \left\{ \left(\frac{7}{20}, -\frac{11}{20}, -\frac{3}{4} \right) \right\}$$

▶ Pour le second système, on a $z = \frac{3}{2}$ et (2^e équation) $y = \frac{7}{5} - \frac{3}{5}z = \frac{7}{5} - \frac{9}{10} = \frac{1}{2}$; dans la première équation :

$$x = \frac{3}{2} + \frac{1}{2}y - \frac{3}{2}z = \frac{3}{2} + \frac{1}{4} - \frac{9}{4} = -\frac{1}{2}$$

L'ensemble des solutions de ce second système est :

$$S_2 = \left\{ \left(-\frac{1}{2}, \frac{1}{2}, \frac{3}{2} \right) \right\}$$

6.3.1 Système de Cramer

On dit qu'un système d'équations linéaires est un système de Cramer si sa matrice est une matrice carrée inversible.

Exercice 6.2. Pour quelles valeurs du paramètre a, le système suivant est-il de Cramer?

$$\begin{cases} (2-a)x + y - z &= 1\\ x - (2-a)y - 3z &= -2\\ -x + 3y + (2-a)z &= 2 \end{cases}$$

Solution

La matrice du système est :

$$A = \begin{pmatrix} 2-a & 1 & -1\\ 1 & -2+a & -3\\ -1 & 3 & 2-a \end{pmatrix}$$

On va réduire cette matrice par la méthode de Gauss.

▶ On permute la première et la troisième ligne, car le premier élément en haut à gauche n'est pas nécessairement non nul.

$$A_1 = \begin{pmatrix} -1 & 3 & 2-a \\ 1 & -2+a & -3 \\ 2-a & 1 & -1 \end{pmatrix}$$

▶ On utilise $a_{1,1} = -1$ comme pivot pour réduire les lignes 2 et 3 $(L_2 \leftarrow L_2 + L_1)$ et $(L_3 \leftarrow L_3 + (2 - a)L_1)$:

$$A_2 = \begin{pmatrix} -1 & 3 & 2-a \\ 0 & 1+a & -1-a \\ 0 & 7-3a & 3-4a+a^2 \end{pmatrix}$$

À ce niveau, on doit distinguer deux cas:

▶ Si $a \neq -1$, on utilise $a_{2,2} = 1 + a$ comme pivot afin de réduire la troisième ligne $(L_3 \leftarrow (1+a)L_3 + (3a-7)L_2)$:

$$A_3 = \begin{pmatrix} -1 & 3 & 2-a \\ 0 & 1+a & -1-a \\ 0 & 0 & 10+3a-6a^2+a^3 \end{pmatrix}$$

On voit que, dans l'expression $a^3 - 6a^2 + 3a + 10$, on peut mettre a + 1 en facteur et on obtient :

$$a^3 - 6a^2 + 3a + 10 = (a - 5)(-2 + a)(1 + a)$$

Il en résulte que, lorsque $a \neq -1$, le système est de Cramer si $a \neq 5$ et $a \neq 2$.

▶ Si a = -1, la réduite obtenue à l'issue de la seconde étape est :

$$A_2' = \begin{pmatrix} -1 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 10 & 8 \end{pmatrix}$$

Il est clair que la matrice n'est pas inversible et donc que le système donné n'est pas de Cramer pour cette valeur de *a*. On obtient une réduite de Gauss de cette matrice en divisant la dernière ligne par 2 et en permuttant les deux dernières lignes :

$$A_3' = \begin{pmatrix} -1 & 3 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & 0 \end{pmatrix}$$

ce qui confirme la non-inversibilité de la matrice.

Conclusion: Le système est un système de Cramer si, et seulement si : $a \neq -1$, $a \neq 2$ et $a \neq 5$.

6.3.2 Propriété

Un système de n équations linéaires à n inconnues admet une unique solution si, et seulement si, ce système est de Cramer.

Matriciellement : A X = B et A inversible $\Rightarrow X = A^{-1} B$.

En particulier, si B = 0 alors X = 0.

Exercice 6.3. Résoudre le système suivant pour $a = 1 - \sqrt{2}$ et pour a = 5.

$$\begin{cases} (2-a)x + y - z &= 0\\ x - (2-a)y - 3z &= 0\\ -x + 3y + (2-a)z &= 0 \end{cases}$$

Solution

Le système est homogène donc son ensemble de solutions est un sous-espace vectoriel de \mathbb{R}^3 .

- ▶ L'exercice précédent nous dit que le système est de Cramer pour $a = 1 \sqrt{2}$; donc, dans ce cas, le système admet une unique solution : (0, 0, 0).
- ightharpoonup Pour a=5, le système n'est pas de Cramer et la réduite de Gauss obtenue est :

$$B = \begin{pmatrix} -1 & 3 & -3 \\ 0 & 6 & -6 \\ 0 & 0 & 0 \end{pmatrix}$$

▶ On divise la deuxième ligne par 6 et on obtient la matrice :

$$B' = \begin{pmatrix} -1 & 3 & -3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

▶ On utilise $a_{2,2} = 1$ comme pivot pour réduire la ligne 1 ($L_1 \leftarrow L_1 - 3L_2$):

$$B_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

▶ On peut écrire le système équivalent au système initial :

$$\begin{cases} -x = 0 \\ y - z = 0 \end{cases}$$

L'ensemble des solutions du système est :

$$S = \{(0, z, z)/z \in \mathbb{R}\}$$

6.4 Système homogène

Un système d'équations linéaires A X = B est dit *homogène* si le second membre B est la matrice colonne nulle.

On a vu ci-dessus que, si A est inversible, l'équation matricielle A X = 0 admettait une seule solution X = 0.

Remarque: Si AX = B est un système homogène réduit, alors $A \in \mathfrak{M}_{n,m}(\mathbb{R})$ avec $m \geq n$, car, dans une réduction par la méthode de Gauss d'une matrice, il n'y a que des 0 sous la diagonale et un système homogène est réduit lorsqu'en particulier, on a supprimé toutes les lignes nulles. On va maintenant étudier le cas où le nombre d'inconnues est supérieur au nombre d'équations.

Propriété

Si une réduction de Gauss d'un système d'équations linéaires homogène s'écrit matriciellement A X = 0, avec $A \in \mathfrak{M}_{n,m}(\mathbb{R})$ et m > n, alors l'ensemble des solutions de ce système d'équations est un sous-espace vectoriel de \mathbb{R}^n non réduit au vecteur nul et donc ce système admet une infinité de solutions.

Exemple

On considère le système réduit d'inconnues réelles :

$$\begin{cases} x_1 - 2x_2 + x_5 - x_6 = 0 \\ 2x_2 - x_3 + x_4 + 2x_6 = 0 \\ x_4 - x_5 + 2x_6 = 0 \\ x_5 - x_6 = 0 \end{cases}$$

La matrice du système s'écrit :

$$A = \begin{pmatrix} 1 & -2 & 0 & 0 & 1 & -1 \\ 0 & 2 & -1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$

Soit a et b deux réels arbitraires tels que $x_3 = a$ et $x_6 = b$. On écrit le système sous la forme :

$$\begin{cases} x_1 - 2x_2 + x_5 - x_6 = 0 \\ 2x_2 - x_3 + x_4 + 2x_6 = 0 \\ x_3 = a \\ x_4 - x_5 + 2x_6 = 0 \\ x_5 - x_6 = 0 \\ x_6 = b \end{cases}$$

Le système s'écrit $A_1 X = B$ avec :

$$A_{1} = \begin{pmatrix} 1 & -2 & 0 & 0 & 1 & -1 \\ 0 & 2 & -1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 \\ 0 \\ a \\ 0 \\ 0 \\ b \end{pmatrix}$$

6.4 Système homogène 151

La matrice A_1 est inversible, car c'est une matrice triangulaire supérieure sans 0 sur la diagonale. Donc le système $A_1 X = B$ admet une seule racine :

$$X = A_1^{-1} B = \begin{pmatrix} a - b \\ \frac{1}{2}a - \frac{1}{2}b \\ a \\ -b \\ b \end{pmatrix}$$

Les valeurs de a et b pouvant être quelconques, on en déduit que l'ensemble des solutions de l'équation matricielle A X = 0 est :

$$\mathcal{S} = \left\{ egin{pmatrix} a-b \ rac{a-b}{2} \ a \ -b \ b \end{pmatrix} / a, b \in \mathbb{R}
ight\}$$

Bien sûr, le vecteur nul est une solution de l'équation matricielle AX = 0.

Énoncés

Exercice 6.1. Démontrer la propriété 1 :

L'ensemble des solutions $\mathcal S$ d'un système homogène est stable par addition et multiplication par un réel ; c'est-à-dire :

$$\forall (X_1, X_2) \in \mathcal{S}^2, \forall \alpha \in \mathbb{R}, \alpha X_1 + X_2 \in \mathcal{S}$$

Exercice 6.2. Démontrer la propriété 2 :

Soit AX = B l'écriture matricielle d'un système d'équations linéaires, X_1 une solution particulière du système, c'est-à-dire un vecteur colonne vérifiant $AX_1 = B$, et S_0 le sous-espace vectoriel des solutions du système d'équations homogène associé, c'est-à-dire l'ensemble des solutions de l'équation AX = 0.

L'ensemble des solutions d'un système d'équations linéaires est l'ensemble $\mathcal S$ des n-listes égales à la somme de X_1 et d'un vecteur de $\mathcal S_0$:

$$S = \{X \in \mathfrak{M}_{n,1}(\mathbb{R})/\exists X_0 \in S_0, \quad X = X_0 + X_1\}$$

Exercice 6.3. On considère la matrice suivante.

$$A = \begin{pmatrix} 2 - 1 & 1 \\ 1 & 0 & 3 \\ 0 - 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

Déterminer une réduite de Gauss de A.

Exercice 6.4. Donner une réduite de Gauss de la matrice suivante.

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 & -1 & -2 & 3 \\ 0 & 0 & 0 & -2 & 0 & 3 & 2 \\ 0 & 0 & 0 & 1 & -1 & 2 & 1 \end{pmatrix}$$

ÉNONCÉS 153

Exercice 6.5. Donner une réduite de Gauss de la matrice suivante.

$$A = \begin{pmatrix} 2 & 1 & -1 & -1 & 1 & 3 & 0 & 2 & -3 \\ 1 & 2 & -1 & -2 & 0 & -1 & 2 & 1 & 4 \\ 3 & 3 & -2 & -3 & 1 & -2 & 3 & -1 & 1 \\ 2 & 4 & -2 & 1 & 2 & -2 & 1 & 0 & 1 \\ 0 & 3 & -1 & -3 & 2 & 1 & 1 & 1 & 0 \\ 0 & 3 & -1 & -3 & 2 & 1 & 1 & -2 & 1 \\ 2 & 4 & -2 & -4 & 3 & 4 & 1 & 0 & 3 \end{pmatrix}$$

Exercice 6.6.

1. Déterminer une matrice inversible *P* telle que :

$$P\left(\begin{array}{ccc} 1 & -1 & 2\\ 0 & 1 & 1\\ 3 & -2 & 1\\ -1 & 1 & -2 \end{array}\right) = \left(\begin{array}{c} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{array}\right)$$

2. On considère le système d'équations dans $\mathbb R$:

$$\begin{cases} x - y + 2z = a \\ y + z = b \\ 3x - 2y + z = c \\ -x + y - 2z = d \end{cases}$$

où *a*, *b*, *c*, *d* sont 4 réels fixés. À quelle(s) condition(s) sur *a*, *b*, *c*, *d* ce système a-t-il des solutions?

Exercice 6.7.

1. Résoudre le sytème d'équations suivant.

$$\begin{cases} 2x + 3y + z + t &= 2\\ 4x + 4y + z + 4t &= 3\\ 6x + 7y + 2z + 5t &= 5 \end{cases}$$

2. En déduire les solutions positives du système suivant.

$$\begin{cases} x^2y^3zt = e^2\\ (xyt)^4z = e^3\\ x^6y^7z^2t^5 = e^5 \end{cases}$$

Corrigés

Corrigé exercice 6.1. Soit AX = 0 l'écriture matricielle associée au système. On confondra ainsi les solutions du système et les solutions de l'équation matricielle associée, c'est-à-dire les vecteurs colonnes.

- L'ensemble S est un sous-ensemble de \mathbb{R}^n non vide car il contient toujours le vecteur nul X = 0.
- Soit X_1 et X_2 deux solutions matricielles du système. Alors $AX_1 = AX_2 = 0$ et, par suite, quel que soit le scalaire α , $A(\alpha X_1 + X_2) = \alpha AX_1 + AX_2 = 0$ donc $\alpha X_1 + X_2$ est un élément de S. Il en résulte que S est un sous-espace vectoriel de \mathbb{R}^n .

Corrigé exercice 6.2. Soit X_1 une solution du système AX = B, c'est-à-dire un vecteur colonne vérifiant $AX_1 = B$. Alors, pour toute solution X_2 de ce système, on a aussi $AX_2 = B$; il s'ensuit, par différence, que $AX_2 - AX_1 = 0$, soit $A(X_2 - X_1) = 0$; il en résulte que $X_0 = X_2 - X_1$ est un élément de S_0 et donc que $X_2 = X_0 + X_1$. Donc toute solution de AX = B est la somme de X_1 et d'une solution du système homogène associé.

Réciproquement, soit $X_2 = X_0 + X_1$, où $X_0 \in S_0$ et X_1 est solution de AX = B. Alors, $AX_2 = A(X_0 + X_1) = AX_0 + AX_1 = 0 + B = B$, donc X_2 est bien une solution de AX = B.

Corrigé exercice 6.3.

► En prenant $a_{1,1} = 2$ comme pivot, on réduit la deuxième et la quatrième lignes : $(L_2 \leftarrow 2L_2 - L_1)$ et $(L_4 \leftarrow L_4 - L_1)$.

$$C_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

On obtient:

$$C_1 A = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 5 \\ 0 & -1 & 2 \\ 0 & 3 & 0 \end{pmatrix}$$

Corrigés 155

▶ Sur cette nouvelle matrice, on considère l'élément qu'on notera $a_{2,2} = 1$ comme pivot pour réduire la troisième et la quatrième lignes : $(L_3 \leftarrow L_3 + L_2)$ et $(L_4 \leftarrow L_4 - 3L_2)$.

$$C_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -3 & 0 & 1 \end{pmatrix}$$

On vérifie:

$$C_2(C_1 A) = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 7 \\ 0 & 0 & -15 \end{pmatrix}$$

▶ Enfin, sur cette dernière matrice, en utilisant $a_{3,3} = 7$ comme pivot, on réduit la quatrième ligne, $(L_4 \leftarrow 7L_4 + 15L_3)$.

$$C_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 15 & 7 \end{pmatrix}$$

On obtient, comme réduite de Gauss, la matrice A1 donnée par :

$$A_1 = C_3 (C_2 C_1 A) = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 7 \\ 0 & 0 & 0 \end{pmatrix}$$

Corrigé exercice 6.4. Les trois premières colonnes étant nulles, on ne fait la réduction que sur la matrice carrée :

$$B = \begin{pmatrix} 0 & -1 & 2 & 1 \\ 1 & -1 & -2 & 3 \\ -2 & 0 & 3 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix}$$

▶ Il est impossible d'utiliser l'élément $b_{1,1}$ comme pivot puisque celui-ci est nul. Permutons d'abord la première et la quatrième lignes de façon à amener un coefficient non nul en $b_{1,1}$.

$$C_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

On a alors la matrice:

$$C_1 A = \begin{pmatrix} 0 & 0 & 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 & -1 & -2 & 3 \\ 0 & 0 & 0 & -2 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & -1 & 2 & 1 \end{pmatrix}$$

▶ On utilise $b_{1,1} = 1$ comme pivot pour réduire les lignes 2 et 3; nous laissons le soin au lecteur de lire dans la matrice C_2 les transformations qui ont été faites.

$$C_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

On obtient la matrice :

$$C_2(C_1 A) = \begin{pmatrix} 0 & 0 & 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & -4 & 2 \\ 0 & 0 & 0 & 0 & -2 & 7 & 4 \\ 0 & 0 & 0 & 0 & -1 & 2 & 1 \end{pmatrix}$$

▶ Il est impossible d'utiliser l'élément $b_{2,2}$ comme pivot, puisque celui-ci est nul. Permutons la seconde et la quatrième lignes :

$$C_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

On obtient la matrice :

$$C_3(C_2C_1A) = \begin{pmatrix} 0 & 0 & 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 0 & -1 & 2 & 1 \\ 0 & 0 & 0 & 0 & -2 & 7 & 4 \\ 0 & 0 & 0 & 0 & 0 & -4 & 2 \end{pmatrix}$$

▶ On utilise $b_{2,2} = -1$ comme pivot pour réduire la troisième ligne; là encore, le lecteur lira la transformation sur la matrice C_4 ci-dessous.

$$C_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

On obtient la matrice :

$$C_4(C_3C_2C_1A) = \begin{pmatrix} 0 & 0 & 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 0 & -1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 & -4 & 2 \end{pmatrix}$$

▶ On utilise $b_{3,3} = 3$ pour réduire la quatrième ligne.

$$C_5 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 4 & 3 \end{pmatrix}$$

Fiches méthode Semestre 1

Étude de la nature d'une application

Attention : Les méthodes développées ici s'appliquent à toutes les applications mais les applications linéaires bénéficient de méthodes supplémentaires qui seront étudiées dans une autre fiche.

1. Pour montrer qu'une application *f* **d'un ensemble** *E* **dans un ensemble** *F* **est injective**, on montre que :

$$\forall x, x' \in E, f(x) = f(x') \Rightarrow x = x'.$$

Par exemple, l'application $f: x \mapsto x^2 + x - 5$ est-elle une injection de $\mathbb N$ dans $\mathbb N$?

On considère deux entiers naturels x et x' tels que f(x) = f(x'):

$$f(x) = f(x') \Leftrightarrow x^2 + x - 5 = x'^2 + x' - 5$$

$$f(x) = f(x') \Leftrightarrow (x - x')(x + x' + 1) = 0$$

Comme x et x' sont deux entiers naturels, il est clair que x + x' + 1 est strictement positif. Par suite :

$$f(x) = f(x') \Leftrightarrow x = x'$$

Il en résulte que l'application f est une injection de \mathbb{N} dans \mathbb{N} .

Pour montrer qu'une application n'est pas injective, on montre qu'il existe deux éléments distincts de l'ensemble de départ ayant la même image dans l'ensemble d'arrivée.

Par exemple, l'application $g: x \mapsto x + |x| - 1$ est-elle une injection de $\mathbb R$ dans $\mathbb R$?

On remarque que g(0) = -1 et que g(-1) = -1. Deux réels distincts ayant la même image, on en déduit que l'application g n'est pas une injection de \mathbb{R} dans \mathbb{R} .

Remarque: On notera l'importance du choix de l'ensemble de départ et d'arrivée dans ce type de question; si l'application f était définie de \mathbb{R}^+ dans \mathbb{R}^+ , elle serait alors injective.

2. Pour montrer qu'une application *f* **d'un ensemble** *E* **dans un ensemble** *F* **est surjective**, on montre que tout élément de l'ensemble d'arrivée admet au moins un antécédent dans l'ensemble de départ.

$$\forall y \in F, \exists x \in E/f(x) = y$$

Par exemple, l'application $f:(x,y)\mapsto x+2y^2$ est-elle une surjection de \mathbb{R}^2 sur \mathbb{R} ?

On considère un élément quelconque z de \mathbb{R} ; on remarque que f(z,0)=z donc z admet au moins un antécédent dans \mathbb{R}^2 , le couple (z,0).

Par suite, l'application f est une surjection de \mathbb{R}^2 dans \mathbb{R} .

Pour montrer qu'une application f d'un ensemble E dans un ensemble F n'est pas surjective, on peut trouver un élément de l'ensemble d'arrivée n'ayant pas d'antécédent par f dans l'ensemble de départ.

Par exemple, l'application $g: x \mapsto -2x^2 + 4$ est-elle une surjection de \mathbb{Z} dans \mathbb{Z} ?

328 Fiches méthode

Cherchons s'il existe un entier relatif x tel que g(x) = 0:

$$g(x) = 0 \Leftrightarrow -2x^2 + 4 = 0$$
$$g(x) = 0 \Leftrightarrow x^2 = 2$$

Cette équation n'a pas de solution dans \mathbb{Z} , donc l'application g n'est pas une surjection de \mathbb{Z} dans \mathbb{Z} .

- 3. Pour montrer qu'une application f d'un ensemble E dans un ensemble F est bijective, on peut :
 - **a.** Montrer qu'elle est à la fois injective et surjective.
 - **b.** Montrer que l'équation f(x) = y d'inconnue x élément de E admet une unique solution. Cette méthode présente l'avantage de déterminer par le même calcul la bijection réciproque dans le cas où f est bijective.

Exemple

Soit f l'application de \mathbb{R}^2 dans \mathbb{R}^2 définie par $(x,y)\mapsto (x+y,x+1)$. Montrer que f est bijective et déterminer sa bijection réciproque.

Soit (a, b) un élément quelconque de \mathbb{R}^2 :

$$f(x,y) = (a,b) \Leftrightarrow (x+y,x+1) = (a,b)$$

L'équation f(x,y)=(a,b) admet pour unique solution dans \mathbb{R}^2 le couple (b-1;a-b+1). On en déduit que f est une bijection de \mathbb{R}^2 dans \mathbb{R}^2 et sa bijection réciproque, notée f^{-1} , est définie par :

$$\forall (a,b) \in \mathbb{R}^2, f^{-1}(a,b) = (b-1; a-b+1)$$

- **c.** Montrer que *f* est la composée de deux bijections.
- **d.** Dans le cas particulier où f est une application d'une partie de \mathbb{R} dans une partie de \mathbb{R} , on peut utiliser le théorème de bijection : si f est continue et strictement monotone sur un intervalle I, alors f réalise une bijection de I sur f(I).

Exemple

Montrer que la fonction f définie sur \mathbb{R}^{+*} par $f(x) = x + \ln x$ est une bijection de \mathbb{R}^{+*} sur un intervalle que l'on précisera.

La fonction f est continue et strictement croissante sur \mathbb{R}^{+*} donc elle réalise une bijection de \mathbb{R}^{+*} sur $f(\mathbb{R}^{+*})$.

Or,
$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty$$
 et $\lim_{\substack{x \to +\infty \\ x > 0}} f(x) = +\infty$.

Donc f est une bijection de \mathbb{R}^{+*} sur \mathbb{R} .

Étude du sens de variation d'une suite

1. Méthode 1

Pour étudier le sens de variation de la suite (u_n) , on peut étudier le signe de $u_{n+1} - u_n$.

Exemple

Soit (u_n) la suite de terme général $\forall n \in \mathbb{N}, u_n = \sum_{k=1}^n \frac{1}{k\sqrt{k}}$.

Étudier les variations de la suite (u_n) :

$$\forall n \in \mathbb{N}, \quad u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k\sqrt{k}} - \sum_{k=1}^{n} \frac{1}{k\sqrt{k}}$$

 $\forall n \in \mathbb{N}, \quad u_{n+1} - u_n = \frac{1}{(n+1)\sqrt{n+1}}$

Par suite, $\forall n \in \mathbb{N}$, $u_{n+1} - u_n \ge 0$; la suite (u_n) est croissante.

2. Méthode 2

Si la suite (u_n) est à termes strictement positifs, on peut comparer le quotient $\frac{u_{n+1}}{u_n}$ à 1.

Exemple

On considère la suite (u_n) définie sur \mathbb{N}^* par $u_n = \frac{2^n}{n!}$. Étudier son sens de variation.

Le terme général de la suite (u_n) comportant des produits, il semble pertinent d'utiliser la méthode 2.

La suite (u_n) est clairement à termes strictement positifs.

$$\forall n \in \mathbb{N}^*, \quad \frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2}{n+1}$$

Comme, par hypothèse, $n \ge 1$, alors $\frac{2}{n+1} \le 1$.

On peut donc en conclure que la suite (u_n) est décroissante.

3. Méthode 3

On compare directement u_{n+1} et u_n à l'aide de manipulations d'inégalités.

Exemple

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = \sqrt{2u_n}$. On admet que, pour tout entier naturel n, u_n existe et $0 < u_n \le 2$ (résultat qui se démontre facilement par récurrence). Étudier le sens de variation de la suite (u_n) .

On sait que $\forall n \in \mathbb{N}, \ 0 < u_n \le 2$. On multiplie par u_n qui est positif :

$$\forall n \in \mathbb{N}, \quad 0 < u_n^2 \le 2u_n$$

330 Fiches méthode

Par stricte croissance de la fonction racine carrée sur \mathbb{R}^+ , il vient :

$$0 < u_n < \sqrt{2u_n}$$

Soit $0 < u_n \le u_{n+1}$, ce qui montre que la suite (u_n) est croissante.

4. Méthode 4

Utilisation d'un raisonnement par récurrence.

Exemple

On considère la suite (u_n) définie par son premier terme $u_0 = 1$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, u_{n+1} = \sqrt{n + u_n}$$

Étudier le sens de variation de la suite (u_n) .

En calculant les premiers termes de la suite, on peut conjecturer que la suite (u_n) est croissante. On le prouve ensuite par récurrence

On note $P_n : u_n \leq u_{n+1}$.

La propriété est vérifiée pour n = 0, puisque $u_0 = 1$ et $u_1 = 1$.

Soit n un entier naturel tel que P_n .

Sachant P_n , $u_n \le u_{n+1}$. Comme $n \le n+1$, on obtient en ajoutant membre à membre ces deux inégalités de mêmes sens :

$$n + u_n \le n + 1 + u_{n+1}$$

et, par croissance de la fonction racine carrée sur \mathbb{R}^+ :

$$\sqrt{n+u_n} \leq \sqrt{n+1+u_{n+1}}$$

soit $u_{n+1} \le u_{n+2}$, ce qui établit P_{n+1} et achève le raisonnement par récurrence.

5. Méthode 5

Exploiter les particularités du sujet et le résulat des questions antérieures.

Exemple

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - x + 1$ et (u_n) la suite définie par la donnée de son premier terme u_0 et par la relation de récurrence :

$$\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$$

- **a.** Montrer que $\forall x \in \mathbb{R}$, $f(x) \ge x$.
- **b.** Étudier les variations de la suite (u_n) .
- **a.** $\forall x \in \mathbb{R}, f(x) x = x^2 2x + 1 = (x 1)^2$. On peut donc affirmer que, pour tout réel x, $f(x) x \ge 0$, ce qui démontre le résultat demandé.
- **b.** La fonction f étant définie sur \mathbb{R} , la suite (u_n) est bien définie et, en appliquant le résultat de la question précédente, il vient :

$$\forall n \in \mathbb{N}, f(u_n) \geq u_n$$

Soit $\forall n \in \mathbb{N}$, $u_{n+1} \ge u_n$, ce qui montre que la suite (u_n) est croissante.

VUIBERT PRÉPAS, des ouvrages pour faire la différence :

- l'essentiel du cours et des applications pour acquérir les connaissances indispensables,
- de nombreux exercices d'entraînement et sujets de concours intégralement corrigés pour se mettre en situation d'épreuve,
- des fiches méthode pour acquérir les bons réflexes,
- des annexes pour maîtriser les simulations avec Scilab.

SOMMAIRE

Première année: Premier semestre

1. Nombre – Topologie de \mathbb{R} et géométrie dans \mathbb{R}^2 – 2. Calcul algébrique et représentation graphique de fonctions usuelles – 3. Éléments de logique – 4. Ensembles et cardinaux – 5. Calcul matriciel – 6. Systèmes d'équations linéaires – 7. Suites de référence et convergence – 8. Polynômes à une indéterminée – 9. Limites et continuité – Étude locale – 10. Fonctions numériques – Étude globale – 11. Fonctions usuelles – 12. Probabilités finies

Première année : Deuxième semestre

13. Dérivabilité, convexité et fonctions réciproques – 14. Intégration – 15. Séries numériques – 16. Espace vectoriel $\mathfrak{M}_{a,l}(\mathbb{R})$ – 17. Espaces probabilisés – 18. Variables aléatoires discrètes – 19. Variables à densité (1)

Deuxième année : Troisième semestre

20. Espaces vectoriels – 21. Applications linéaires – 22. Réduction des endomorphismes et des matrices carrées – 23. Suites et séries – Compléments – 24. Comparaison des fonctions et développements limités – 25. Intégrales impropres – 26. Couples aléatoires discrets – Suites de variables aléatoires

Deuxième année : Quatrième semestre

27. Fonctions de deux variables (1) – 28. Fonctions de deux variables (2) – 29. Variables à densité (2) – 30. Convergence – 31. Estimateurs et estimations.

Sujets incontournables aux concours: A. Fonctions génératrices – B. Processus de Poisson

Annexe: Scilab

Les auteurs :

Bénédicte Bourgeois est professeur en classe préparatoire économique et commerciale au lycée Notre-Dame du GrandChamp à Versailles.

François Delaplace est professeur en classe préparatoire économique et commerciale au lycée Notre-Dame du GrandChamp à Versailles.

Fabrice Fortain dit Fortin est professeur en classe préparatoire économique et commerciale au lycée Notre-Dame du GrandChamp à Versailles.

Émily Tournesac est professeur en classe préparatoire économique et commerciale au lycée Antonin Artaud à Marseille.

